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Transition metal catalyzed allylic substitution reactions with carbon
nucleophiles are powerful C—C bond formation methods because of
their broad substrate scopes under mild reaction conditions.' Charac-
teristic among them are Cu-catalyzed allylic substitutions, which have
excellent y-regioselectivity. However, these reactions are only possible
with strongly nucleophilic organometallic reagents such as Grignard
or organozinc reagents.? Also, the reaction of sp>-carbon nucleophiles
such as aryl or alkenylmetal reagents have not been well exploited
due to the poor nucleophilicity of these reagents.?

Herein, we report a new Pd-catalyzed allylic substitution methodol-
ogy, which allows for the reaction of allylic acetates with arylboronic
acids with high y-selectivity and E/Z-selectivity. The reaction of
optically active allylic acetates having an o-stereogenic center took
place with excellent a-to-y chirality transfer with syn-selectivity and
gave the corresponding optically active allyl—aryl coupling products
with a stereogenic center at the benzylic position.*”®

The reaction of allylic acetate 1a with phenylboronic acid (1.5 equiv)
in the presence of Pd(OAc), (10 mol %), 1,10-phenanthroline (12 mol
%) and AgSbFg (10 mol %) in 1,2-dichloroethane at 60 °C for 6 h
afforded allyl—aryl coupling product 2a in 80% isolated yield (91%
convn of 1a) with complete regio- (2a/2a’ 100:0) and E/Z- (>20:1)
selectivities (Scheme 1).%'° Conversely, the reaction of 1a' afforded
2a’, an isomer of 2a with regard to the a/y-regioselectivity, with
complete regio- (2a/2a’ 0:100) and E/Z- (>20:1) selectivities. Notably,
the Pd-catalyzed allylic substitution can be performed even under air
without affecting the product yield and selectivities.
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In contrast, the reaction without 1,10-phenanthroline afforded a
complex mixture with no allyl—aryl coupling product (100% convn).
While 2,2"-bipyridyl was as effective as 1,10-phenanthroline (80%
yield), other diamines that we tested were less effective under otherwise
identical conditions. Phosphine ligands inhibited the reaction com-
pletely, giving only a trace of biphenyl. The catalytic reaction even
proceeded without AgSbF¢ but with a significantly reduced yield
(54%).

The Pd-catalyzed allyl—aryl coupling can be applied to various
combinations of allylic acetates (1) and arylboronic acids (Table 1).'*"'!
The reactions afforded the y-substitution products 2 exclusively (entries
3—13) or predominantly (entries 1 and 2), irrespective of the substitu-
tion patterns of the allylic acetates. Moreover, the reactions took place
with complete E-selectivity (not applicable for 1h, entry 13). The
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reaction tolerates a variety of functional groups in both 1 and
arylboronic acids; MeO, CF;, chloride, ketone, aldehyde, ester, and
silyl ether functionalities can be present in the substrates (entries 2—8).

Table 1. Palladium-Catalyzed Reaction of Allylic Acetates with
Arylboronic Acids?

entry  allylic boronic acid product’ yield®  yaf
acctate (%)
=
Ohc Me | >fe
I A GBOH 20 26 937
1a o o X
2ab-ag
2 1a MeO—@—B(OH), 2ac 76 93:7
3 1a Fﬁ‘@*B(OH)z 2ad 82 >99:1
4 1a CIOB(OH)Q 2ae 80 >99:1
Q,
5 1 B(CH) 2af 81 >99:1
a Me>_®_ B a
o}
"
6° 1a ’\>: 2ag 71 >99:1
B(OH),
o Ohc o Ph
T e~ PIBOH)  prho SN T2 0010
1b 2b

8 Ipso A~ PIBOH)  1psg~A 68 >99:
1c 2c

9 h #  PhBOH) P 84 >99:1
1d
OAc Ph

10 o -~ PABOH): g~ 700 >99:1
1e 2e

QAc Ph

11 PPN PRR(OIT), PN 39 »99:]
1f 2f
OAc Ph

12 # PhB(OI1), A 76 >99-1]
1g 29
OAc )\/\

13 -+ PhB(OH); Sy 75 >99:1
1h 2h

“ Conditions: Pd(OAc), (10 mol %), 1,10-phenanthroline (12 mol %),
AgSbFs (10 mol %), 1 (0.50 mmol), arylboronic acid (0.75 mmol),
1,2-dichloroethane (3.0 mL), 60 °C, 12 h. ® Isomeric ratios: E/Z > 20:1.
See ref 10. “Isolated yield. ¥ Determined by 'H NMR. ¢ Unreacted
allylic acetate (1) was detected in the crude material by 'H NMR
analysis (entry 1, 40%; entry 6, 14%; entry 11, 15%). 7 Conditions:
Pd(OAc), (5 mol %), 1,10-phenanthroline (10 mol %), AgSbF (10 mol
%), 1 (0.50 mmol), PhB(OH), (1.0 mmol), THF (3.0 mL), 60 °C, 12 h.

Table 1 also shows that the efficiency of the reaction is sensitive to
the steric demand of the arylboronic acids and the y-substituent of 1,
but substantial steric bulk is tolerated at the a-position. For instance,
the reaction of 1a with o-tolylboronic acid is much slower than that
with phenylboronic acid and gave the coupling product 2ab in only
26% yield (entry 1). Furthermore, as the y-substituent became bulkier
(H < Me < Et < i-Bu), the product yield decreased (Scheme 1 and
Table 1, entries 9—11). On the other hand, allylic acetates 1g and 1h,
bearing a bulky isopropyl group and two methyl groups, respectively,
at the a-position were efficiently coupled with phenylboronic acid
(entries 12 and 13).

10.1021/ja808673n CCC: $40.75 [ 2008 American Chemical Society



COMMUNICATIONS

The reaction of (S)-(E)-1g (97% ee), which has o-i-Pr and y-Me
substituents, with phenylboronic acid in the presence of Pd(OAc),,
1,10-phenanthroline, and AgSbF, gave (R)-(E)-2g with 97% ee,
showing that the allyl—aryl coupling with o-chiral allylic acetates took
place with excellent o-to-y chirality transfer with syn-selectivity
(Scheme 2).'° The reaction of (S)-(E)-1i (97% ee), which has a-Bu
and y-Me substituents, with phenylboronic acid gave (R)-(E)-2i with
97% ee, suggesting that the efficiency of the chirality transfer is not
significantly influenced by the steric demand of the a-substituent. On
the other hand, the reaction of (S)-(E)-1j (97% ee), which has a-Hex
and y-Et groups, afforded (S)-(E)-2j (89% ee) with slightly decreased
enantiomeric purity.

Scheme 2
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A possible mechanism for the Pd-catalyzed reaction is proposed in
Scheme 3. First, the reaction of 1,10-phenanthroline-ligated Pd(OAc),
and AgSbF, forms the cationic palladium(II) complex A. The catalytic
cycle is initiated by transmetalation between A and an arylboronic
acid to form the (o-aryl)palladium(II) intermediate B.'* Subsequently,
B forms sr-complex C with allylic acetate 1. Then, the s7-complex C
undergoes the regioselective C—C double bond insertion into the
aryl—Pd bond with the assistance of intramolecular coordination of
the carbonyl oxygen of the acetoxy group to the cationic Pd center,
forming metallacyclic alkylpalladium(IT) D. Finally, -acetoxy elimina-
tion, rather than 5-hydride elimination, from D affords coupling product
2 and regenerates A."?

Scheme 3. Proposed Mechanism
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Scheme 4. Proposed Mechanism for the Pd-Catalyzed Allyl—Aryl
Coupling with (S)-(E)-1i and PhB(OH),
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The stereochemical outcome observed in the reaction of the chiral
allylic acetate (S)-(E)-1i can be rationalized by considering the
A'3-strain in the substrate during the coordination-assisted insertion
(C' to D') and the syn-f-acetoxy elimination (from D) as shown in
Scheme 4.'*

In summary, we have established an air-tolerable, Pd-catalyzed
y-selective and stereospecific substitution reaction between allylic
acetates and arylboronic acids, which gives allyl—aryl coupling

products with a stereogenic center at the benzylic position. Exploration
of the reaction mechanism and development of more advanced catalyst
systems and enantioselective reactions with a chiral catalyst are ongoing
in our laboratory.
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